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Abstract-A new functional for the finite element method is de-

scribed for the distribution of high-freqnency electromagnetic

fields in arbitrarily shaped, 10SSYdielectrics in 3D. The method
uses a brick-shaped edge element (covariant-projection element)
and a second-order, symmetric, vector absorbing bonndary con-

dition. Analytic solntions are available for the case of a plane

wave incident on a lossy sphere, and these are nsed to show that
the new method is capable of predicting the fields in and around

the sphere to an average accuracy of 1-2Y0, even when the outer,

absorbing bonndary is no more than a third of a wavelength
from the sphere.

I. INTRODUCTION

T HE FINITE element method (FEM) is a powerful and ac-

curate technique for modeling electromagnetic problems

of arbitrary geometries. As it is based on a partial differential

equation, it requires volume discretization, i.e., division of the

region of interest into smaller nonoverlapping subvolumes, the

finite elements, on which a special mathematical procedure

is applied [1]. The FEM solves for the stationary point of a

functional F [2]. The whole mathematical procedure leads to

a square, sparse, and symmetric (or Hermitian) matrix. The

matrix size depends on the number of the finite elements into

which the volume of interest has been discretized, and the

polynomial order of the trial functions.

In vector problems, edge elements guarantee solutions free

from the unreal spurious fields, which arise from the improper

modeling of the irrotational fields. Spurious fields do not

satisfy Maxwell’s equations. Edge elements are tangentially

continuous, and they can handle both sharp metallic corners

and dielectric inhomogeneities without any extra effort [3].

Covariant projection elements, a type of curvilinear edge

element, have also successfully been used in high-frequency

vector problems [4]–[7], [10], [12]. Their advantages are

referenced in [4], [5]. These elements have been used in this

work.
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Fig. 1. An z-z cross-section of the 3D geometry. The gray area is the
dielectric sphere of radius R, which is completely enclosed by the concentric

absorbing boundary surface of radius R + D. The incident plane wave is
z-polarized and :-traveling.

In open-boundary vector problems, e.g., 3D high-frequency

electromagnetic scattering, it is impossible to discretize the

unbounded infinite volume. For such problems, the FEM is

frequently coupled to an integral equation condition (IEC)

[8]. The FEM is used for the interior volume of interest.

and the IEC takes care of the exterior infinite domain. This

IEC is global and exact; however, it destroys the sparsity of

the FE matrices, and frequently it suffers from singularities.

An approximate local absorbing boundary condition (ABC)

was recently proposed that could be used in partial differential

equation techniques [13]. The symmetric version of this which

renders it suitable to the FEM was developed and tested

successfully [9], [10], [12]. This ABC is applied on a spherical

absorbing boundary surface (ABS) that completely surrounds

the discretized volume of interest; see Fig. 1. Its physical

interpretation is that of an approximate impedance boundary

condition for all the outgoing waves traveling through ABS. It

is shown that for metallic scatterers and for outgoing waves,

this technique constitutes a powerful tool in electromagnetic

modeling, allowing the wide use of the FEM in unbounded

problems [5].

This FE–ABC method was extended so that the ABS may

not be a sphere, but rather a multiswface that consists of

several planes completely enclosing the volume of interest

[1 1]. The results presented showed very good accuracy in

the far-field region, but their accuracy was not verified in the

near-field region.

In this work, a simpler form of the functional F’ than

that used in [11] is given, valid for metallic and dielectric

objects in the presence of incident waves. A lossy dielectric
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sphere was analyzed, and the calculation refers to the near- which, in fact, is the curl+xrl equation (5), and

field region where the error is maximum. Only second-order

ABC’s have been used, since they were shown to be superior 2)
/

{m’ ~(v x Es x u?-) + B(r)

to the first-order ones [5], [10], [12]. s
. [a, ~(v x fw)][ur ~(v x Es)]

II. VARIATIONAL FORMULATION +a(6E;) E; –p(r)(v. 6E;)(V .E:)}ds = o

In electromagnetic scattering, the total electric field E can (9)

be expressed as the sum of the incident EL and the scattered

Es parts

E= EL+ E”, (1)

and similarly for the magnetic field H

H= H~+Hs. (2)

Thus, in the presence of dielectrics, the two curl Maxwell’s

equations may be written as

V x H’ = jWeOGEs + J. (3)

where j is the square root of minus one, w is the angular

frequency, co and PO are the permittivity and permeability

of free space, respectively, c. is the relative permittivity of

medium, and Je = jweo (G- – l)E’ is the equivalent source

current. Then the curl–curl equation is given by

V x V x Es – k&TEs = F%:(cr – 1)E2 (5)

where the free-space wavenumber k. is given by: k. =

w-. On the exterior spherical absorbing boundary surface

(ABS), the following second-order ABC is applied [5], [12]

Ur x V x Es = CYE: + /?(r) {Vt(V . E:)

+V X iir[ur ~(V X Es)]} (6)

where UT is the radial unit vector, a = jko, and ~ = 1/ (2jko +

2/r). The subscript t denotes the tangential component to

the ABS. The above ABC is approximate, valid for outward-

propagating waves, and improves at a rate of T-5 [9]. For

the curl–curl equation (5) and the second-order ABC, the

functional F may be written as

/
F(W) = {(V X ES)2 - k&.E”

. 17

– 2k3(eT – l)Ei . Es}dV

- /3(r)(V . E;)2} dS (7)

where Es is the unknown scattered complex vector electric

field, V is the volume of interest, and S is the ABS which

should be in the air. The presence of the surface-divergence

term in the surface integral in (7) requires that normal conti-

nuity of the field is imposed on ABS. This can be very easily

done if the element edges on the ABS are collinear with lines

of constant 19and # [12]. The stationary point of F (7) gives

– k;(e, – 1)6ES . E’] dV = O (8)

which is the second-order ABC (6). The same results can be

obtained using a weighted residual method.

III. THE LossY DmLECTRIC SPHERE

For an x-polarized and z-traveling plane wave,

field is given by

E: = Eoe–f~O’ = ~oe–jkorcos (8)

the electric

where EO is a constant. Let the center of a dielectric sphere

of radius R be located at the origin of the coordinate axes.

In the presence of the above incident wave, this sphere will

create the following scattered electric field Es: 1) in the region

(~o, UCI), i.e., r > R (derived from [14, (6-26), (6-100)])

. bnR$)(kor)P~ (COS (6)) (lOa)

- ‘F )bnip’ (korp:(cos (0)) ; (Ioc)
J’sin(~) ~=1

and 2) in the region (c., Me), i.e., r < R (derived from [14,

(6-26), (6-1 12)])

~, = -/30Cos ($!5) m
r jW,2 ~~(~+ l)dn7L=1

. $Jk7”)P;(cos (0))

– cos (~) sin (0)(130 e-~~0” ‘Os(6)) (ha)

E; = _ E() Cos ((/!))

Ikor

“(&fjen~n(k7-)P~(cos ((3))

n=l
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Fig. 2. Degenerate curvilinear brick elements touching the z axis and the

origin O.

- +&nm$lwcos (q)
n—. )

– cos (0) cos (#)( Eoe–~kOTCos(e)) (llb)

+ sin (q5)(EOe-~kO” ‘“’ (d)) (Ilc)

the Bessel function of the first kind of or~er n, H~2)

is the Hankel function of second kind of order n [15],

Pi = – (dPn/M), and Pn is the Legendre polynomial [15].

The prime denotes the derivatives with respect to kor or

kr, respectively. The constants bm, en, dn, and en are the

ones given in [14, (6-113)], but they have been multiplied

by – 1 for consistency.

IV. RESULTS

The problem of the dielectric sphere scatterer in the presence

of an incident plane wave was analyzed with the new method.

The dielectric sphere was chosen because analytical solutions

exist for this geometry. The geometry of the problem is shown

in Fig. 1. Due to symmetries, only one quarter of the volume

was modeled holding the ‘-11 -.”:-- L,...-A.-, ,.,... >:+;,.-. (.O=

also Fig. 1):

Boundary Surface:
r=R+D

~=()”

fp = 90”

The finite elements used

LU1lU W 1115 UUU1lUCU y LAJ1lUILIU1l> (>GG

Boundary Condition:

Absorbing boundary condition

Magnetic wall

Electric wall

were curvilinear hexahedra, except

those touching the .z axis which were degenerate; see F;g.

2. Elements 2 and 3 are standard curvilinear hexahedra,

element 4 is a curvilinear tetrahedron (i.e., a twice degenerate

hexahedron), and the others are curvilinear pentahedra (i.e.,

once degenerate hexahedra).

TABLE I

THE FOUR CASES TREATED

~r = (3.0, –2.0) @ = (20.0, – 10.0)
R = 0.36A0 case 1 - case 2

R = O 477~o case 3 case 4

25”01’30-20’i ‘10’00)

Fig. 3. Solution error versus r, which is the distance from the origin O. The

radius of the dielectric sphere is R = 0.36 A. and its relative permittivity c, =

(3.0, –2.0). The solution error is the largest value of e = 173&EM – ,?7&,,Ct \

over the volume modeled, expressed as a percentiige of the magnitude of the
incident electric field. The numbers at the right end of each curve indicate the

distance D in free-space wavelengths (see also Fig. 1).

Four separate cases were treated: case 1, case 2, case 3,

and case 4. In case 1 (low frequency, low dielectric), the

dielectric sphere’s radius was R = 0.36 A. (A. is the free-

space wavelength) and the relative permittivity was c. =

(3.0, – 2.0). In case 4 (higher frequency, higher dielectric),

the sphere’s radius was R = 0.477 A. and c. = (20.0, – 10.0).

See Table I for cases 2 and 3.

There were 14 and 8 elements in the O and # directions,

respectively, one element every 0.05 Aq in the r direction for

cases 1 and 2, and one element every 0.06 A. for cases 3 and 4.

Figs. 3 and 4 show hoy the error changes in cases 1 and

2 as the ABS is moved outwards. The maximum field error

shown is the largest value of

(12)

over the volume modeled, expressed as a percentage of the

magnitude of the incident electric field, The numbers at the

right end of each curve indicate the distance D in free-space

wavelengths (see also Fig. 1). The analytical expressions for

the field ( 10)–( 11) do not provide a unique value on the z

axis, and they fail to converge in its vicinity. Therefore, no

comparisons were made for these regions. It appears that there

is not much improvement in the error inside the dielectric when

the ABS is placed at a distance D >0.26 ~. away from the

sphere, while outside, it continues to improve. This is because

the same mesh density was used everywhere in the mesh, so

the discretization error in the dielectric is bigger than that

outside. This is also why the error inside the higher dielectric

is a little bit higher than that in the low dielectric.
Fig. 5 shows the amplitude of the total electric field E

along the line BA, at O = 6.4286° and ~ = 45 °(Fig. 1).

The solid line represents the analytical results, and it was

interpolated in the vicinity of O to give a continuous line. The

ABS was set at a distance D = 0.36 A. away from the sphere.

The average error throughout the mesh was about l%. The
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Fig. 5. Amplitude of the total electric field \E[ along the DA hue at @ =

6.4286° and qJ = 45° for case 2.

field is discontinuous at the dielectric interfaces, and the finite

element solution follows the analytical one very closely. For

the specific line 13A, the electric field is more discontinuous

at the back since, in the region of point 13 at the front, it is

still strongly tangential. Also, the absorption is maximum at

the front.

Figs. 6 and 7 show how the error changes in cases 3 and 4 as

the ABS is moved outwards. The maximum field error shown

is the one described above (12). Fig. 8 shows the amplitude of

the total electric field E along the line BA for case 4. As the

same mesh density was used inside and outside the dielectric,

discretization error is higher inside the dielectric sphere. This

is due to the mesh generator used that could only provide the

same discretization throughout the region. The average error

in the air region was about 1970,while inside the dielectric it

was about 2%.

The iterative conjugate gradient method and some of its

variants were tried for the solution of the final FE matrix.

Most of them failed to converge; when they did, the rate of

convergence was too slow: for a 4000 x 4000 matrix, 20000

iterations were needed. Therefore, the vectorized direct BCS

solver was used instead [16]. More details on computational

considerations may be found in [5], [12].

V. CONCLUSION

The open boundary problem of the lossy dielectric sphere

scatterer was analyzed using a new simplified functional.
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O. The radius of the dielectric sphere is R = 0.477A0 and its relative
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each curve indicate the distance D in free-space wavelengths (see also Fig. 1).
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Curvilinear covariant projection elements were used, and also

their degenerate forms where needed. Numerical tests suggest

that the second-order vector absorbing boundary conditions

can effectively absorb outgoing radiation if placed at a distance

D = 0.3 ~. from the scatterer. This also confirms earlier

experience with the metallic sphere scatterer. The results

give an average error of about 1–2% throughout the meshed

region (near-field region). Global far-field parameters may

require a much smaller distance D. Although homogeneous
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dielectric spheres were tested, the advantage of the FEM lies

in the analysis of strongly inhomogeneous objects since no

extra interface conditions are required. However, no analytical

solutions exist for such problems that could allow a rigorous

test of the accuracy of the method.
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