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Modeling the Electromagnetic Field in Lossy
Dielectrics Using Finite Elements and Vector
Absorbing Boundary Conditions

Vassilios N. Kanellopoulos, Member, IEEE, and Jon P. Webb, Member, IEEE

Abstract—A new functional for the finite element method is de-
scribed for the distribution of high-frequency electromagnetic
fields in arbitrarily shaped, lossy dielectrics in 3D. The method
uses a brick-shaped edge element (covariant-projection element)
and a second-order, symmetric, vector absorbing boundary con-
dition. Analytic solutions are available for the case of a plane
wave incident on a lossy sphere, and these are used to show that
the new method is capable of predicting the fields in and around
the sphere to an average accuracy of 1-2%, even when the outer,
absorbing boundary is no more than a third of a wavelength
from the sphere.

I. INTRODUCTION

HE FINITE element method (FEM) is a powerful and ac-

curate technique for modeling electromagnetic problems
of arbitrary geometries. As it is based on a partial differential
equation, it requires volume discretization, i.e., division of the
region of interest into smaller nonoverlapping subvolumes, the
finite elements, on which a special mathematical procedure
is applied [1]. The FEM solves for the stationary point of a
functional F' [2]. The whole mathematical procedure leads to
a square, sparse, and symmetric (or Hermitian) matrix. The
matrix size depends on the number of the finite elements into
which the volume of interest has been discretized, and the
polynomial order of the trial functions.

In vector problems, edge elements guarantee solutions free
from the unreal spurious fields, which arise from the improper
modeling of the irrotational fields. Spurious fields do not
satisfy Maxwell’s equations. Edge elements are tangentially
continuous, and they can handle both sharp metallic corners
and dielectric inhomogeneities without any extra effort [3].
Covariant projection elements, a type of curvilinear edge
element, have also successfully been used in high-frequency
vector problems [4]-[7], [10], [12]. Their advantages are
referenced in [4], [5]. These elements have been used in this
work.
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Fig. 1. An t-z cross-section of the 3D geometry. The gray area is the
dielectric sphere of radius R, which is completely enclosed by the concentric
absorbing boundary surface of radius R 4+ D. The incident plane wave is
x-polarized and =-traveling.

In open-boundary vector problems, e.g., 3D high-frequency
electromagnetic scattering, it is impossible to discretize the
unbounded infinite volume. For such problems, the FEM is
frequently coupled to an integral equation condition (IEC)
[8]. The FEM is used for the interior volume of interest,
and the IEC takes care of the exterior infinite domain. This
IEC is global and exact; however, it destroys the sparsity of
the FE matrices, and frequently it suffers from singularities.
An approximate local absorbing boundary condition (ABC)
was recently proposed that could be used in partial differential
equation techniques [13]. The symmetric version of this which
renders it suitable to the FEM was developed and tested
successfully [9], [10], [12]. This ABC is applied on a spherical
absorbing boundary surface (ABS) that completely surrounds
the discretized volume of interest; see Fig. 1. Its physical
interpretation is that of an approximate impedance boundary
condition for all the outgoing waves traveling through ABS. It
is shown that for metallic scatterers and for outgoing waves,
this technique constitutes a powerful tool in electromagnetic
modeling, allowing the wide use of the FEM in unbounded
problems [5].

This FE~-ABC method was extended so that the ABS may
not be a sphere, but rather a multisurface that consists of
several planes completely enclosing the volume of interest
[11]. The results presented showed very good accuracy in
the far-field region, but their accuracy was not verified in the
near-field region.

In this work, a simpler form of the functional F' than
that used in [11] is given, valid for metallic and dielectric
objects in the presence of incident waves. A lossy dielectric
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sphere was analyzed, and the calculation refers to the near-
field region where the error is maximum. Only second-order
ABC’s have been used, since they were shown to be superior
to the first-order ones [5], [10], [12].

II. VARIATIONAL FORMULATION

In electromagnetic scattering, the total electric field £ can
be expressed as the sum of the incident E* and the scattered
E° parts

E=FE+FE°, 1)
and similarly for the magnetic field H
H=H +0H. )

Thus, in the presence of dielectrics, the two curl Maxwell’s
equations may be written as

V x H® = jwepe, E° + J. (3)

V x E? = —jwuoH? “4)

where j is the square root of minus one, w is the angular
frequency, ey and g are the permittivity and permeability
of free space, respectively, €, is the relative permittivity of
medium, and J, = jweg(e, — 1)E* is the equivalent source
current. Then the curl—curl equation is given by

VXV xE ~kieE =ki(e —1)E (5)

where the free-space wavenumber ko is given by: ky =
wy/€oto. On the exterior spherical absorbing boundary surface
(ABS), the following second-order ABC is applied [5], [12]

a, X V x B° = oF} + B(r){VV - E})

+V xaa, - (VxE%)]} (6)
where a.. is the radial unit vector, o = jkg, and 5 = 1/(25ko+
2/r). The subscript ¢ denotes the tangential component to
the ABS. The above ABC is approximate, valid for outward-
propagating waves. and improves at a rate of +—° [9]. For

the curl-curl equation (5) and the second-order ABC, the
functional F' may be written as

P(E) = [ (VB = ke B
—2k2(e, — 1)E' - E*}dV
+ / (0B + B(r)[ay - (V x E°))?
— B(r)(V - E})*} dS (N

where E° is the unknown scattered complex vector electric
field, V is the volume of interest, and S is the ABS which
should be in the air. The presence of the surface-divergence
term in the surface integral in (7) requires that normal conti-
' nuity of the field is imposed on ABS. This can be very easily
done if the element edges on the ABS are collinear with lines
of constant § and ¢ [12]. The stationary point of I’ (7) gives

/ [6E° - (V XV x E°) — ke, 6E° - E°
-
—ki(e, — 1)6E* - E']1dV =0 (8)

which, in fact, is the curl-curl equation (5), and

/{ms AV x E* x a,) + B(r)
S
“lar - (V x 0E")][a, - (V x E®)]
b (6B - ES — Br)(V - SES)(V - )} dS =0
©

which is the second-order ABC (6). The same results can be
obtained using a weighted residual method.

III. THE LOSSY DIELECTRIC SPHERE

For an z-polarized and z-traveling plane wave, the electric
field is given by

E; — Eoe—]kgz — Eoe—]kor cos ()

where Ej is a constant. Let the center of a dielectric sphere
of radius R be located at the origin of the coordinate axes.
In the presence of the above incident wave, this sphere will
create the following scattered electric field £°: 1) in the region
(€0, o), i.€., 7 > R (derived from [14, (6-26), (6-100)])

ES = EOCOS(¢)Z ('fb-l‘-l)

r k22

b H (legr) P (cos (A))  (10a)

o _Eocos(9)
E9 - lﬂo?"
. (sm chH@) (kor) P, (cos ()
LA o 69P5<cos<e>>> (105
n 1
gy _ Fosin(@)

]fo’l'

. (nglcn ﬁ,(f) (kor) 50 Pé(cos (9))

1 i NPV
~ jsin (Q)anﬂﬁz) (kor) Py (cos (9))): (10c)
n=1

and 2) in the region (e, po), i.e., r < R (derived from [14,
(6-26), (6-112)])

. _ Eocos(¢) &
By = Tk Z (n+1)

- dn(kr)P (cos (9))

— cos () sin (0)( Ege~IHor o5 (6)) (11a)

Egcos(¢)
B k‘oT

. <sm ZenJ (kr)P(cos (8))

Ej =
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Fig. 2. Degenerate curvilinear brick elements touching the # axis and the
origin 0.

Ve io
— cos (8) cos (¢) (Ege 7 kor cos (0))

1€ Zdnj;(kr)%g}(cos (9)))
Tp=1
(11b)

Ly sin (@)
Ej=————
¢ k()?"

o0 N a 1
. (Zen Jn(kT)gg—Pn (COS (0))

n=1

_ mzdnj;(m)g}(cos (9)))

+ sin (¢)(EgeIkor cos (6)) (11c)

where €. can be complex, k = /Gko, Jn(¥) =

2 dpys (o), AP @) = )2 Hg%(x), Jn is
the Bessel function of the first kind of order n, Hy(Lz)
is the Hankel function of second kind of order n [15],
P! = —(8P,/d0), and P, is the Legendre polynomial [15].
- The prime denotes the derivatives with respect to kor or
kr, respectively. The constants b, ¢,, d,, and e, are the
ones given in [14, (6-113)], but they have been multiplied
by —1 for consistency.

IV. RESULIS

The problem of the dielectric sphere scatterer in the presence
of an incident plane wave was analyzed with the new method.
The dielectric sphere was chosen because analytical solutions
exist for this geometry. The geometry of the problem is shown
in Fig. 1. Due to symmetries, only one quarter of the volume
was modeled holding the following boundary conditions (see
also Fig. 1):

Boundary Surface: Boundary Condition:

r=R+D Absorbing boundary condition
¢ =0° Magnetic wall
¢ = 90° Electric wall

The finite elements used were curvilinear hexahedra, except
those touching the z axis which were degenerate; see Fig.
2. Elements 2 and 3 are standard curvilinear hexahedra,
element 4 is a curvilinear tetrahedron (i.e., a twice degenerate
hexahedron), and the others are curvilinear pentahedra (i.e.,
once degenerate hexahedra).

TABLE 1
THE FOuR CASES TREATED
e = (3.0, —2.0) e = (20.0, —10.0)
R = 0.36)\¢ case 1 case 2
R =0477) case 3 case 4
25.0 q 4
(3.0,-2.0) \ (1.0,0.0)

-~ 20.0 A
=
%5

15,0
R 0.05
12 >
©10.0
[
5 0.15
= 5.0 A
O

\ 0.26 036
0.0 0,41
0.12 0.20 0.28 0.36 0.44. 0.52 0.60 0.68 0.76

Distance from center (wavelengths)

Fig. 3. Solution error versus r, which is the distance from the origin 0. The
radius of the dielectric sphere is R = 0.36 Ao and its relative permittivity e, =

(3.0, —2.0). The solution error is the largest value of e =-|Efpy — Eoyaci

over the volume modeled, expressed as a percentage of the magnitude of the
incident electric field. The numbers at the right end of each curve indicate the
distance D in free-space wavelengths (see also Fig. 1).

Four separate cases were treated: case 1, case 2, case 3,
and case 4. In case 1 (low frequency, low dielectric), the
dielectric sphere’s radius was R = 0.36 Ag (\g is the free-
space wavelength) and the relative permittivity was ¢, =
(3.0, — 2.0). In case 4 (higher frequency, higher dielectric),
the sphere’s radius was R = 0.477 Ap and €, = (20.0, —10.0).
See Table I for cases 2 and 3.

There were 14 and 8 elements in the # and ¢ directions,
respectively, one element every 0.05 Aq in the r direction for
cases 1 and 2, and one element every 0.06 Ao for cases 3 and 4.

Figs. 3 and 4 show how the error changes in cases 1 and
2 as the ABS is moved outwards. The maximum field error
shown is the largest value of

e = |Eppv — E2

exact l

12)

over the volume modeled, expressed as a percentage of the
magnitude of the incident electric field. The numbers at the
right end of each curve indicate the distance D in free-space
wavelengths (see also Fig. 1). The analytical expressions for
the field (10)—(11) do not provide a unique value on the z
axis, and they fail to converge in its vicinity. Therefore, no
comparisons were made for these regions. It appears that there
is not much improvement in the error inside the dielectric when
the ABS is placed at a distance D > 0.26 A\g away from the
sphere, while outside, it continues to improve. This is because
the same mesh density was used everywhere in the mesh, so
the discretization error in the dielectric is bigger than that
outside. This is also why the error inside the higher dielectric
is a little bit higher than that in the low dielectric.

Fig. 5 shows the amplitude of the total electric field
along the line BA, at § = 6.4286° and ¢ = 45°(Fig. 1).
The solid line represents the analytical results, and it was
interpolated in the vicinity of 0 to give a continuous line. The
ABS was set at a distance D = 0.36 Ay away from the sphere.
The average error throughout the mesh was about 1%. The
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Fig. 4. Solution error versus r, which is the distance from the origin 0. The
radius of the dielectric sphere 1s R = 0.36 Ao and its relative permittivity €, =
(20.0, — 10.0). The solution error is the largest value of e = |E} gy —ES ool
over the volume modeled, expressed as a percentage of the magnitude of the
mceident electric field. The numbers at the right end of each curve indicate the
distance D in free-space wavelengths (see also Fig. 1).
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Fig. 5. Amplitude of the total electric ficld |E| along the BA lne at 6 =
6.4286° and ¢ = 45° for case 2.

field is discontinuous at the dielectric interfaces, and the finite
element solution follows the analytical one very closely. For
the specific line B A, the electric field is more discontinuous
at the back since, in the region of point B at the front, it is
still strongly tangential. Also, the absorption is maximum at
the front.

Figs. 6 and 7 show how the error changes in cases 3 and 4 as
the ABS is moved outwards. The maximum field error shown
is the one described above (12). Fig. 8 shows the amplitude of
the total electric field F along the line BA for case 4. As the
same mesh density was used inside and outside the dielectric,
discretization error is higher inside the dielectric sphere. This
is due to the mesh generator used that could only provide the
same discretization throughout the region. The average error
in the air region was about 1%. while inside the dielectric it
was about 2%.

The iterative conjugate gradient method and some of its
variants were tried for the solution of the final FE matrix.
Most of them failed to converge; when they did, the rate of
convergence was too slow: for a 4000 x 4000 matrix, 20 000
iterations were needed. Therefore, the vectorized direct BCS
solver was used instead [16]. More details on computational
considerations may be found in [5], [12].

V. CONCLUSION

The open boundary problem of the lossy dielectric sphere
scatterer was analyzed using a new simplified functional.
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Fig. 6. Solution error versus r, which is the distance from the origin
0 The radius of the dielectric sphere is R = 0.447X\p and its relative
permittivity e, = (3.0, —20). The solution error is the largest value of
e = |Ef g — Eicacl| over the volume modeled, expressed as a percentage
of the magnitude of the incident electric field. The numbers at the right end of
each curve indicate the distance D in free-space wavelengths (see also Fig. 1).
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Fig. 7. Solution error versus r, which is the distance from the origin
0. The radius of the dielectric sphere is B = 0.477Ag and its relative
permittivity &» = (20.0. —10.0). The solution error is the largest value of
e = |Efpy — Bl | over the volume modeled, expressed as a percentage
of the magnitude of the incident electric field. The numbers at the right end of
each curve indicate the distance D in free-space wavelengths (see also Fig. 1).
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Fig. 8. Amplitude of the total electric field |E| along the BA line at # =
6.4286° and ¢ = 45° for case 4.

Curvilinear covariant projection elements were used, and also
their degenerate forms where needed. Numerical tests suggest
that the second-order vector absorbing boundary conditions
can effectively absorb outgoing radiation if placed at a distance
D = 03 Ay from the scatterer. This also confirms earlier
experience with the metallic sphere scatterer. The results
give an average error of about [-2% throughout the meshed
region (near-field region). Global far-field parameters may
require a much smaller distance D. Although homogeneous



KANELLOPOULOS AND WEBB: MODELING THE ELECTROMAGNETIC FIELD IN LOSSY DIELECTRICS 827

dielectric spheres were tested, the advantage of the FEM lies
in the analysis of strongly inhomogeneous objects since no
extra interface conditions are required. However, no analytical
solutions exist for such problems that could allow a rigorous
test of the accuracy of the method.
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